7 v 1 [ cs . I T ] 4 J an 2 00 6 The necessity and sufficiency of anytime capacity for stabilization of a linear system over a noisy communication link Part I : scalar systems
نویسنده
چکیده
We review how Shannon’s classical notion of capacity is not enough to characterize a noisy communication channel if the channel is intended to be used as part of a feedback loop to stabilize an unstable scalar linear system. While classical capacity is not enough, another sense of capacity (parametrized by reliability) called “anytime capacity” is shown to be necessary for the stabilization of an unstable process. The required rate is given by the log of the unstable system gain and the required reliability comes from the sense of stability desired. A consequence of this necessity result is a sequential generalization of the Schalkwijk/Kailath scheme for communication over the AWGN channel with feedback. In cases of sufficiently rich information patterns between the encoder and decoder, adequate anytime capacity is also shown to be sufficient for there to exist a stabilizing controller. These sufficiency results are then generalized to cases with noisy observations, delayed control actions, and without any explicit feedback between the observer and the controller. Both necessary and sufficient conditions are extended to continuous time systems as well. We close with comments discussing a hierarchy of difficulty for communication problems and how these results establish where stabilization problems sit in that hierarchy.
منابع مشابه
The necessity and sufficiency of anytime capacity for stabilization of a linear system over a noisy communication link Part I: scalar systems
In this paper, we review how Shannon’s classical notion of capacity is not enough to characterize a noisy communication channel if the channel is intended to be used as part of a feedback loop to stabilize an unstable scalar linear system. While classical capacity is not enough, another sense of capacity (parametrized by reliability) called “anytime capacity” is necessary for the stabilization ...
متن کاملThe necessity and sufficiency of anytime capacity for stabilization of a linear system over a noisy communication link, Part II: vector systems
In part I, we reviewed how Shannon’s classical notion of capacity is not sufficient to characterize a noisy communication channel if the channel is intended to be used as part of a feedback loop to stabilize an unstable scalar linear system. While classical capacity is not enough, a sense of capacity (parametrized by reliability) called “anytime capacity” is both necessary and sufficient for ch...
متن کاملar X iv : c s / 06 10 14 3 v 1 [ cs . I T ] 2 4 O ct 2 00 6 Source coding and channel requirements for unstable processes
Our understanding of information in systems has been based on the foundation of memoryless processes. Extensions to stable Markov and auto-regressive processes are classical. Berger proved a source coding theorem for the marginally unstable Wiener process, but the infinite-horizon exponentially unstable case had been open since Gray’s 1970 paper. There were also no theorems showing what is need...
متن کاملOn the tightness of linear policies for stabilization of linear systems over Gaussian networks
In this paper, we consider stabilization of multi-dimensional linear systems driven by Gaussian noise controlled over parallel Gaussian channels. For such systems, it has been recognized that for stabilization in the sense of asymptotic stationarity or stability in probability, Shannon capacity of a channel is an appropriate measure on characterizing whether a system can be made stable when con...
متن کاملDesign of robust fuzzy Sliding-Mode control for a class of the Takagi-Sugeno uncertain fuzzy systems using scalar Sign function
This article presents a fuzzy sliding-mode control scheme for a class of Takagi-Sugeno (T-S) fuzzy which are subject to norm-bounded uncertainties in each subsystem. The proposed stabilization method can be adopted to explore T-S uncertain fuzzy systems (TSUFS) with various local control inputs. Firstly, a new design is proposed to transform TSUFS into sliding-mode dynamic systems.In addi...
متن کامل